Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Virology ; 594: 110059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518442

RESUMO

Ovine pulmonary adenocarcinoma (OPA), caused by the jaagsiekte sheep retrovirus (JSRV), is a chronic, progressive, and contagious lung tumor that seriously affects sheep production. It also represents a valuable animal model for several human lung adenocarcinomas. However, little is known about the role of autophagy in OPA tumorigenesis. Here, Western blotting combined with transmission electron microscopy examination and Cyto-ID dye staining was employed for evaluation of changes of autophagic levels. The results of the present study showed that expression of the autophagy marker proteins Beclin-1 and LC3 was decreased in OPA lung tissues, as well as in cells overexpressing the envelope glycoprotein of JSRV (JSRV Env). Reduced numbers of autophagosomes were also observed in cells overexpressing JSRV Env, although assessment of autophagic flux showed that JSRV Env overexpression did not block the formation of autophagosomes, suggesting increased degradation of autolysosomes. Last, mouse xenograft experiments indicated that inhibition of autophagy by 3-methyladenine suppressed both tumor growth and the epithelial-to-mesenchymal transition. In conclusion, JSRV, through JSRV Env, takes advantage of the autophagy process, leading to the development of OPA.


Assuntos
Retrovirus Jaagsiekte de Ovinos , Ovinos , Animais , Humanos , Camundongos , Retrovirus Jaagsiekte de Ovinos/genética , Retrovirus Jaagsiekte de Ovinos/metabolismo , Produtos do Gene env , Transformação Celular Neoplásica , Autofagia , Glicoproteínas/metabolismo
2.
Front Oncol ; 13: 994340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816960

RESUMO

Background: Hepatocellular carcinoma (HCC) is a common malignant primary tumor. Bactrian camels have high economic and social values, but their potential medical value has not been studied. This study aimed to investigate the effects of Bactrian camel plasma-derived exosomes on HCC. Methods: Plasma was obtained from thin and normal Bactrian camels, and used to isolate exosomes by ultracentrifugation. The exosomes were then characterized by transmission electron microscopy and Nano particle tracking analyzer. In vivo imaging of nude mice and hematoxylin eosin (HE) staining of liver tissues were used to explore the effects of the exosomes on tumor growth. Finally, the differences of the two exosomes were further analyzed using small RNA sequencing and proteomics. Results: In vivo imaging and HE staining showed that no significant differences were found in fluorescence value and liver tissue morphology between the control mice and the mice treated with the exosomes from thin Bactrian camels; while the fluorescence value and the live histology changes were alleviated in the mice with the exosomes from normal Bactrian camels. After sequencing and proteomic analysis, 40 differentially expressed miRNAs (DE-miRNAs, 15 down-regulated and 25 up-regulated) and 172 differentially expressed proteins (DEPs, 77 up-regulated and 95 down-regulated) were identified in the plasma-derived exosomes from normal Bactrian camels. These identified DE-miRNAs and DEPs were significantly enriched in many signaling pathways. Conclusions: Normal Bactrian camel plasma-derived exosomes may inhibit the growth of HCC cells through regulating pathways of Ras, Ras-Association Proximate 1 (Rap1), phosphoinositide 3-kinase-protein kinase B (PI3K-Akt), mitogen-activated protein kinase (MAPK), adenosine monophosphate-activated protein kinase (AMPK), and canonical Wnt signaling pathways.

3.
BMC Vet Res ; 14(1): 134, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673353

RESUMO

BACKGROUND: The ovine rumen is involved in host defense responses and acts as the immune interface with the environment. The ruminal mucosal epithelium plays an important role in innate immunity and secretes antimicrobial innate immune molecules that have bactericidal activity against a variety of pathogens. Defensins are cationic peptides that are produced by the mucosal epithelia and have broad-spectrum antimicrobial activity. Sheep ß-defensin-1 (SBD-1) is one of the most important antibacterial peptides in the rumen. The expression of SBD-1 is regulated by the probiotic, Saccharomyces cerevisiae (S.c); however, the regulatory mechanism has not yet been elucidated. In the current study, the effects of S.c on the expression and secretion of SBD-1 in ovine ruminal epithelial cells were investigated using quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, specific inhibitors were used to block the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), p38, JNK, and ERK1/2 signalling pathways separately or simultaneously, to determine the regulatory mechanism(s) governing S.c-induced SBD-1 upregulation. RESULTS: Incubation with S.c induced release of SBD-1 by ovine ruminal epithelial cells, with SBD-1 expression peaking after 12 h of incubation. The highest SBD-1 expression levels were achieved after treatment with 5.2 × 107 CFU∙mL- 1 S.c. Treatment with S.c resulted in significantly increased NF-κB, p38, JNK, ERK1/2, TLR2, and MyD88 mRNA expression. Whereas inhibition of mitogen-activated protein kinases (MAPKs) and NF-κB gene expression led to a decrease in SBD-1 expression. CONCLUSIONS: S.c was induced SBD-1 expression and the S.c-induced up-regulation of SBD-1 expression may be related to TLR2 and MyD88 in ovine ruminal epithelial cells. This is likely simultaneously regulated by the MAPKs and NF-κB pathways with the p38 axis of the MAPKs pathway acting as the primary regulator. Thus, the pathways regulating S.c-induced SBD-1 expression may be related to TLR2-MyD88-NF-κB/MAPKs, with the TLR2-MyD88-p38 component of the TLR2-MyD88-MAPKs signalling acting as the main pathway.


Assuntos
Mucosa Gástrica/microbiologia , Rúmen/microbiologia , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Masculino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Rúmen/citologia , Rúmen/metabolismo , Ovinos
4.
Braz. j. microbiol ; 43(4): 1281-1290, Oct.-Dec. 2012. graf
Artigo em Inglês | LILACS | ID: lil-665810

RESUMO

Two-day-old specific pathogen-free (SPF) chickens were divided into two groups. Group I was inoculated orally with fowl adenovirus VIII (FAV-VIII). Group II served as a negative control. Chickens were investigated at various days post-inoculation (dpi) by flow cytometric analysis for changes in T lymphocyte subpopulations in immune system and blood. In the thymus, CD3+ T lymphocytes were increased at 25 dpi, with significant increases in the FAV infected noted at 1, 12, 20dpi (p<0.05). This was accompanied by a corresponding increase of CD4+ and CD8+ T lymphocytes. In the spleen, CD3+ and CD4+ T lymphocytes were increased significantly at 30 dpi (p<0.01) whereas CD8+ and TCR γ δ+ T lymphocytes were decreased at 1 (p<0.05), 30 dpi (p<0.01). An increase of CD3+, CD4+ and CD8+ T lymphocytes was noticed in peripheral blood, and accompanied by a decrease of TCR γ δ+ T lymphocytes. These results demonstrated that infection with FAV-VIII causes significant fluctuations in T lymphocyte subpopulations in thymus, blood and spleen. It can be concluded that an infection with FAV-VIII has profound effects on the immune system, especially on cell mediated immune competency.


Assuntos
Animais , Antibacterianos/análise , Aviadenovirus/isolamento & purificação , Aviadenovirus/patogenicidade , Citometria de Fluxo/métodos , Sistema Imunitário , Linfócitos T/microbiologia , Imunidade Celular , Aves Domésticas , Virulência
5.
Braz J Microbiol ; 43(4): 1281-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031954

RESUMO

Two-day-old specific pathogen-free (SPF) chickens were divided into two groups. Group I was inoculated orally with fowl adenovirus Ⅷ (FAV-Ⅷ). Group II served as a negative control. Chickens were investigated at various days post-inoculation (dpi) by flow cytometric analysis for changes in T lymphocyte subpopulations in immune system and blood. In the thymus, CD3(+)T lymphocytes were increased at 25 dpi, with significant increases in the FAV infected noted at 1, 12, 20dpi (p<0.05). This was accompanied by a corresponding increase of CD4(+) and CD8(+) T lymphocytes. In the spleen, CD3(+) and CD4(+) T lymphocytes were increased significantly at 30 dpi (p<0.01) whereas CD8(+) and TCR γ δ(+) T lymphocytes were decreased at 1 (p<0.05), 30 dpi (p<0.01). An increase of CD3(+), CD4(+) and CD8(+) T lymphocytes was noticed in peripheral blood, and accompanied by a decrease of TCR γ δ(+) T lymphocytes. These results demonstrated that infection with FAV-Ⅷ causes significant fluctuations in T lymphocyte subpopulations in thymus, blood and spleen. It can be concluded that an infection with FAV-Ⅷ has profound effects on the immune system, especially on cell mediated immune competency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...